Regulation Of Gst-Mda-7 Toxicity In Human Glioblastoma Cells By Erbb1, Erk1/2, Pi3k, And Jnk1-3 Pathway Signaling
Yacoub, A., etc.
Molecular Cancer Therapeutics,
2008
The present studies defined the biological effects of a GST fusion protein of melanoma differentiation-associated gene-7 (mda-7), GST-MDA-7 (1 and 30 nmol/L), on cell survival and cell signaling in primary human glioma cells in vitro. GST-MDA-7, in a dose- and time-dependent fashion killed glioma cells with diverse genetic characteristics; 1 nmol/L caused arrest without death, whereas 30 nmol/L caused arrest and killing after exposure. Combined inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT function was required to enhance 1 nmol/L GST-MDA-7 lethality in all cell types, whereas combined activation of MEK1 and AKT was required to suppress 30 nmol/L GST-MDA-7 lethality; both effects are mediated in part by modulating c-Jun NH2-terminal kinase (JNK) 1-3 activity. The geldanamycin 17AAG inhibited AKT and ERK1/2 in GBM cells and enhanced GST-MDA-7 lethality. JNK1-3 signaling promoted BAX activation and mitochondrial dysfunction. In GBM6 cells, GST-MDA-7 (30 nmol/L) transiently activated p38 mitogen-activated protein kinase, which was modestly protective against JNK1-3-induced toxicity, whereas GST-MDA-7 (300 nmol/L) caused prolonged intense p38 mitogen-activated protein kinase activation, which promoted cell death. In GBM12 cells that express full-length mutant activated ERBB1, inhibition of ERBB1 did not modify GST-MDA-7 lethality; however, in U118 established glioma cells, stable overexpression of wild-type ERBB1 and/or truncated active ERBB1vIII suppressed GST-MDA-7 lethality. Our data argue that combined inhibition of ERK1/2 and AKT function, regardless of genetic background, promotes MDA-7 lethality in human primary human glioma cells via JNK1-3 signaling and is likely to represent a more ubiquitous approach to enhancing MDA-7 toxicity in this cell type than inhibition of ERBB1 function. [Mol Cancer Ther 2008;7(2):314–29]
- Journal
- Molecular Cancer Therapeutics
- Year
- 2008
- Page
- 314-329
- Institute
- Virginia Commonwealth University
Referenced Products
Product | Cat No. |
---|---|
Ad-CMV-Caspase 9 (DN) | 1044 |
Ad-FLIP | 1525 |
Ad-CMV-Akt1 (dn) | 1021 |
Ad-h-BCL-xL-shRNA | 1808 |
Ad-BIRC4/XIAP | 1429 |
Ad-CMV-MEK1(dn) | 1165 |
Ad-CMV-CrmA | 1032 |
Vector Biolabs
293 Great Valley Parkway
Malvern, PA 19355
Email: info@vectorbiolabs.com
Phone: +1 484-325-5100
Toll-free (US Only): 877-BIO-LABS
Fax: +1 215-525-1112
Privacy Policy