Using a transgenic mouse model to express MafA, Pdx1, and Neurog3 (3TF) in a pancreatic acinar cell- and doxycycline-dependent manner, we discovered that the outcome of transcription factor-mediated acinar to ß-like cellular reprogramming is dependent on both the magnitude of 3TF expression and on reprogramming-induced inflammation. Overly robust 3TF expression causes acinar cell necrosis, resulting in marked inflammation and acinar-to-ductal metaplasia. Generation of new ß-like cells requires limiting reprogramming-induced inflammation, either by reducing 3TF expression or by eliminating macrophages. The new ß-like cells were able to reverse streptozotocin-induced diabetes 6 days after inducing 3TF expression but failed to sustain their function after removal of the reprogramming factors.
Pancreatic Inflammation Redirects Acinar to ß Cell Reprogramming
Clayton HW & etc. (2016). Pancreatic Inflammation Redirects Acinar to ß Cell Reprogramming. Cell Reports, doi: 10.1016/j.celrep.2016.10.068