Primary cilia control cell alignment and patterning in bone development via ceramide-PKC¿-ß-catenin signaling

J Lim, etc
Communications Biology, 2020

Intraflagellar transport (IFT) proteins are essential for cilia assembly and function. IFT protein mutations lead to ciliopathies, which manifest as variable skeletal abnormalities. However, how IFT proteins regulate cell alignment during bone development is unknown. Here, we show that the deletion of IFT20 in osteoblast lineage using Osterix-Cre and inducible type I Collagen-CreERT cause a compromised cell alignment and a reduced bone mass. This finding was validated by the disorganized collagen fibrils and decreased bone strength and stiffness in IFT20-deficient femurs. IFT20 maintains cilia and cell alignment in osteoblasts, as the concentric organization of three-dimensional spheroids was disrupted by IFT20 deletion. Mechanistically, IFT20 interacts with the ceramide-PKC¿ complex to promote PKC¿ phosphorylation in cilia and induce the apical localization of ß-catenin in osteoblasts, both of which were disrupted in the absence of IFT20. These results reveal that IFT20 regulates polarity and cell alignment via ceramide-pPKC¿-ß-catenin signaling during bone development.

Read more »

Communications Biology
doi: 10.1038/s42003-020-0767-x
University of Pennsylvania