Enhanced insulin production and reprogramming efficiency of mesenchymal stem cells derived from porcine pancreas using suitable induction medium

S Lee, S
Xenotransplantation, 2018


Background

Genetic reprogramming is a powerful method for altering cell properties and inducing differentiation. However, even if the same gene is reprogrammed, the results vary among cells. Therefore, a better possible strategy involves treating cells with factors that further stimulate differentiation while using stem cells with the same tissue origin. This study aimed to increase induction efficiency and insulin production in reprogrammed cells using a combination of factors that promote cell differentiation.

Methods

Porcine pancreatic cells were cultured to obtain mesenchymal stem cells expressing pancreatic cell-specific markers through sequential passages. The characteristics of these cells were identified, and the M3 gene (Pdx1, Ngn3, MafA) was reprogrammed to induce differentiation into insulin-producing cells. Additionally, the differentiation efficiency of insulin-producing cells was compared by treating reprogrammed cells with a differentiation-promoting factor.

Results

Mesenchymal stem cells isolated from porcine pancreatic tissues expressed exocrine cell markers, including amylase and cytokeratin 18, and most cells continuously expressed the beta cell transcription factors Ngn3 and NeuroD. Reprogramming of the M3 gene resulted in differentiation into insulin-producing cells. Moreover, significantly increased insulin and glucagon expressions were observed in the suitable induction medium, and the characteristic beta cell transcription factors Pdx1, Ngn3, and MafA were expressed at levels as high as those in pancreatic islet cells.

Conclusions

Differentiation into insulin-producing cells represents an alternative therapy for insufficient pancreatic islet cells when treating diabetes. Therefore, cells with the characteristics of the target cell should be used to improve differentiation efficiency by creating an environment that promotes reprogramming and differentiation.

Read more »

Journal
Xenotransplantation
Year
2018
Page
doi: 10.1111/xen.12451
Institute
Asan Medical Center